IS414: Data Mining

Chapter 3: Data Preprocessing

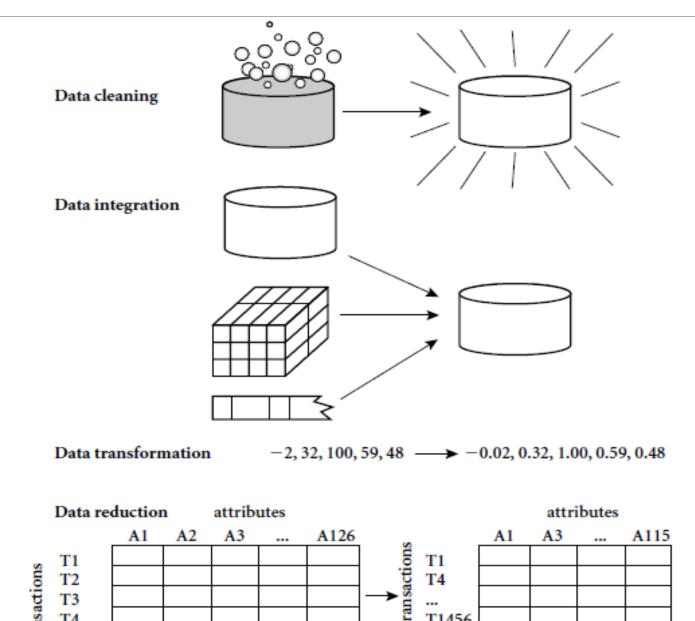
IS414: Data Mining

Chapter 3: Data Preprocessing

- **Data Preprocessing: An Overview**
- Data Cleaning
- Data Integration
- Data Reduction and Transformation
- Dimensionality Reduction

Summary

What is Data Preprocessing? — Major Tasks



T1456

T/A

3

What is Data Preprocessing? — Major Tasks

Data cleaning

Handle missing data, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression

Data transformation and data discretization

- Normalization
- Concept hierarchy generation

Why Preprocess the Data? — Data Quality Issues

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation* = "" (missing data)
 - □ <u>Noisy</u>: containing noise, errors, or outliers
 - □ e.g., *Salary* = "−10" (an error)
 - Inconsistent: containing discrepancies in codes or names, e.g.,
 - □ *Age* = "42", *Birthday* = "03/07/2010"
 - □ Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised inissing data)
 - □ Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - **Equipment malfunction**
 - Inconsistent with other recorded data and thus deleted
 - Data were not entered due to misunderstanding
 - Certain data may not be considered important at the time of entry
 - Did not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- □ Fill in the missing value manually: tedious + infeasible?
- **Fill in it automatically with**
 - a global constant : e.g., "unknown", a new class?!
 - Let the attribute mean
 - □ the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

- □ Noise: random error or variance in a measured variable
- □ Incorrect attribute values may be due to
 - Faulty data collection instruments
 - Data entry problems
 - Data transmission problems
 - Technology limitation
 - Inconsistency in naming convention

Other data problems

- Duplicate records
- Incomplete data
- Inconsistent data

How to Handle Noisy Data?

Binning

- □ First sort data and partition into (equal-frequency) bins
- Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - Smooth by fitting the data into regression functions
- Clustering
 - Detect and remove outliers
- Semi-supervised: Combined computer and human inspection
 - Detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

Data discrepancy detection

- Use metadata (e.g., domain, range, dependency, distribution)
- Check field overloading
- Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)
- **Data migration and integration**
 - Data migration tools: allow transformations to be specified
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
- Integration of the two processes
 - Iterative and interactive (e.g., Potter's Wheels)

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction and Transformation
- Dimensionality Reduction

Summary

Data Integration

- Data integration
 - Combining data from multiple sources into a coherent store
- □ Schema integration: e.g., A.cust-id = B.cust-#
 - Integrate metadata from different sources

Entity identification:

- Identify real world entities from multiple data sources, e.g., Bill Clinton = William Clinton
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs.
 British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by *correlation analysis* and *covariance analysis*
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (for Categorical Data)

observed $\chi^{2} = \sum_{i}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$ expected

- Null hypothesis: The two distributions are independent
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
 - □ The larger the X² value, the more likely the variables are related
- □ Note: Correlation does not imply causality

□ X² (chi-square) test:

- # of hospitals and # of car-theft in a city are correlated
- Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

□ X² (chi-square) calculation (numbers in parenthesis are expected

How to derive 90? 450/1500 * 300 = 90

We can reject the null hypothesis of independence at counts calculated based on the data distribution in the two categories) a confidence of 0.001

$$\chi^{2} = \frac{(250 - 90)^{2}}{90} + \frac{(50 - 210)^{2}}{210} + \frac{(200 - 360)^{2}}{360} + \frac{(1000 - 840)^{2}}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group

Variance for Single Variable (Numerical Data)

The variance of a random variable X provides a measure of how much the value of X deviates from the mean or expected value of X:

 $\sigma^{2} = \operatorname{var}(X) = E[(X - \mu)^{2}] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$

- u where σ^2 is the variance of X, σ is called *standard deviation* μ is the mean, and μ = E[X] is the expected value of X
- □ That is, variance is the expected value of the square deviation from the mean
- □ It can also be written as: $\sigma^2 = \operatorname{var}(X) = E[(X \mu)^2] = E[X^2] \mu^2 = E[X^2] [E(x)]^2$
- Sample variance is the average squared deviation of the data value x_i from the sample mean $\hat{\mu}$ $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \hat{\mu})^2$

Covariance for Two Variables

Covariance between two variables X_1 and X_2

 $\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1]E[X_2]$

where $\mu_1 = E[X_1]$ is the respective mean or **expected value** of X_1 ; similarly for μ_2

- Sample covariance between X₁ and X₂: $\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} \hat{\mu}_1)(x_{i2} \hat{\mu}_2)$
- \Box Sample covariance is a generalization of the sample variance:

$$\hat{\sigma}_{11} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)(x_{i1} - \hat{\mu}_1) = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)^2 = \hat{\sigma}_1^2$$

- **D Positive covariance:** If $\sigma_{12} > 0$
- **D** Negative covariance: If $\sigma_{12} < 0$
- **Independence**: If X_1 and X_2 are independent, $\sigma_{12} = 0$ but the reverse is not true
 - Some pairs of random variables may have a covariance 0 but are not independent
 - Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Example: Calculation of Covariance

- Suppose two stocks X_1 and X_2 have the following values in one week:
 - **(**2, 5), (3, 8), (5, 10), (4, 11), (6, 14)
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
- Covariance formula

 $\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1]E[X_2]$

Its computation can be simplified as: $\sigma_{12} = E[X_1X_2] - E[X_1]E[X_2]$

$$\Box \quad E(X_1) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4$$

$$\Box \quad E(X_2) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6$$

- $\Box \quad \sigma_{12} = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- Thus, X_1 and X_2 rise together since $\sigma_{12} > 0$

Correlation between Two Numerical Variables

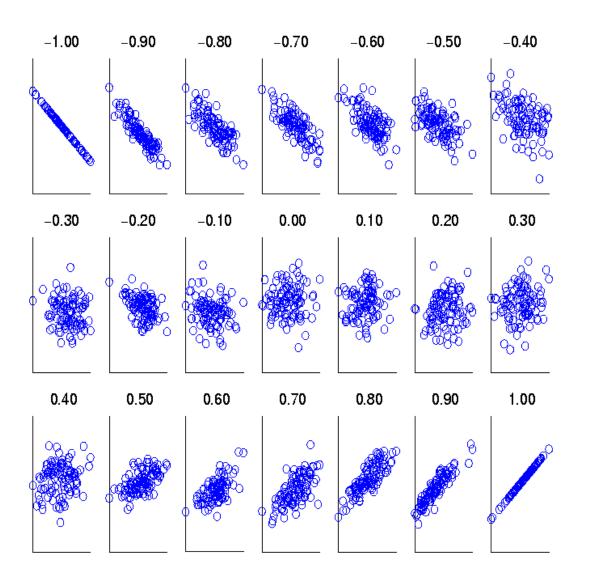
Correlation between two variables X₁ and X₂ is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$
Sample correlation for two attributes X₁ and X₂: $\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$

where n is the number of tuples, μ_1 and μ_2 are the respective means of X_1 and X_2 , σ_1 and σ_2 are the respective standard deviation of X_1 and X_2

- If $\rho_{12} > 0$: A and B are positively correlated (X_1 's values increase as X_2 's)
 - □ The higher, the stronger correlation
- If $\rho_{12} = 0$: independent (under the same assumption as discussed in co-variance)
- If $\rho_{12} < 0$: negatively correlated

Visualizing Changes of Correlation Coefficient



- Correlation coefficient value range:
 [-1, 1]
- A set of scatter plots shows sets of points and their correlation coefficients changing from -1 to 1

Covariance Matrix

The variance and covariance information for the two variables X₁ and X₂ can be summarized as 2 X 2 covariance matrix as

$$\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{T}] = E[(\frac{X_{1} - \mu_{1}}{X_{2} - \mu_{2}})(X_{1} - \mu_{1} \quad X_{2} - \mu_{2})]$$

$$= \begin{pmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})]\\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1})] & E[(X_{2} - \mu_{2})(X_{2} - \mu_{2})] \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2} \end{pmatrix}$$
pradizing it to definencions, we have

Generalizing it to *d* dimensions, we have,

$$D = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \cdots & x_{dd} \end{pmatrix} \Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction and Transformation

Dimensionality Reduction

Summary

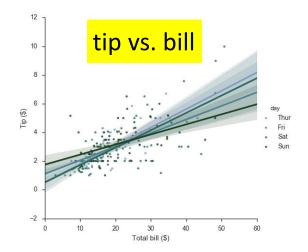
Data Reduction

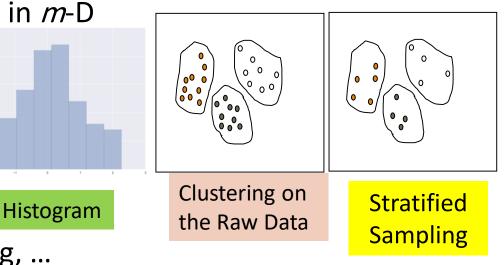
Data reduction:

- Obtain a reduced representation of the data set
 - much smaller in volume but yet produces *almost* the same analytical results
- □ Why data reduction?—A database/data warehouse may store terabytes of data
 - Complex analysis may take a very long time to run on the complete data set
- □ Methods for data reduction (also *data size reduction* or *numerosity reduction*)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Data Reduction: Parametric vs. Non-Parametric Methods

- Reduce data volume by choosing alternative, *smaller* forms of data representation
- **Parametric methods** (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
 - Ex.: Log-linear models—obtain value at a point in *m*-D space as the product on appropriate marginal subspaces
- □ Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, ...

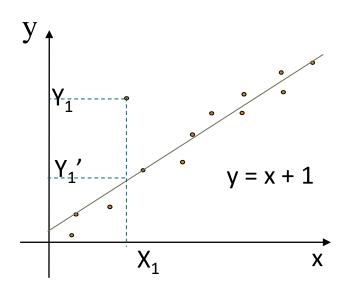




Parametric Data Reduction: Regression Analysis

Regression analysis: A collective name for techniques for the modeling and analysis of numerical data consisting of values of a *dependent variable* (also called *response variable* or *measurement*) and of one or more *independent variables* (also known as *explanatory variables* or *predictors*)

- The parameters are estimated so as to give a "best fit" of the data
- Most commonly the best fit is evaluated by using the *least squares method*, but other criteria have also been used

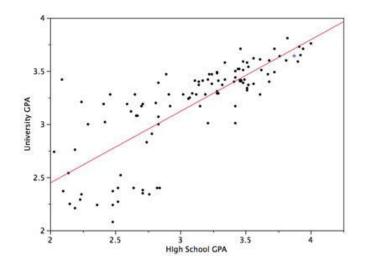


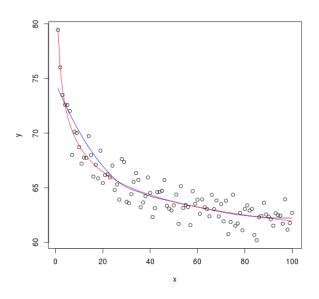
Used for prediction

 (including forecasting of time-series data),
 inference, hypothesis
 testing, and modeling of causal relationships

Linear and Multiple Regression

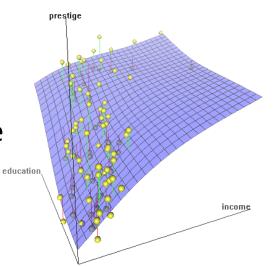
- $\Box \quad \underline{\text{Linear regression}}: Y = w X + b$
- Data modeled to fit a straight line
- Often uses the least-square method to fit the line
- Two regression coefficients, w and b, specify the line and are to be estimated by using the data at hand
- Using the least squares criterion to the known values of Y₁, Y₂, ..., X₁, X₂,
- □ <u>Nonlinear regression</u>:
 - Data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables
 - The data are fitted by a method of successive approximations

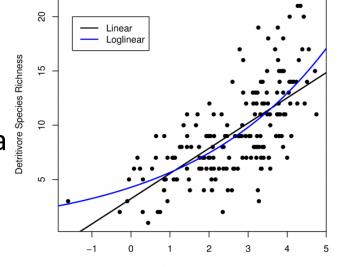




Multiple Regression and Log-Linear Models

- $\square \quad \underline{\text{Multiple regression}}: Y = b_0 + b_1 X_1 + b_2 X_2$
 - Allows a response variable Y to be modeled as a linear function of multidimensional feature vector
 - Many nonlinear functions can be transformed into the above
- Log-linear model:
 - A math model that takes the form of a function whose logarithm is a linear combination of the parameters of the model, which makes it possible to apply (possibly multivariate) linear regression
 - Estimate the probability of each point (tuple) in a multidimen. space for a set of discretized attributes, based on a smaller subset of dimensional combinations
 - Useful for dimensionality reduction and data smoothing

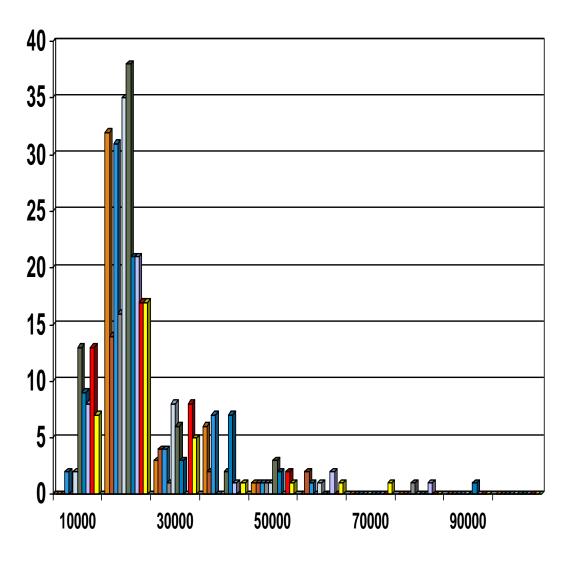




log(detritus biomass

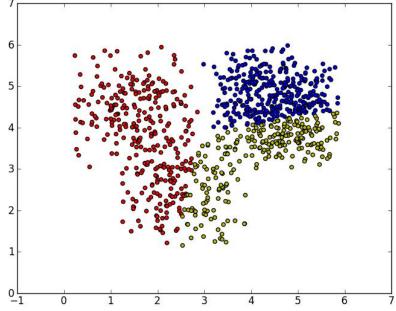
Histogram Analysis

- Divide data into buckets and store average (sum) for each bucket
- Partitioning rules:
 - Equal-width: equal bucket range
 - Equal-frequency (or equal-depth)



Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared"
- Can have hierarchical clustering and be stored in multidimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms
- Cluster analysis will be studied in depth in Chapter 10

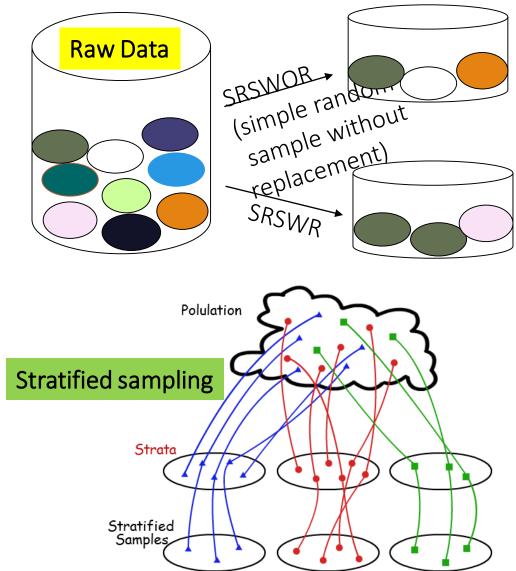


Sampling

- Sampling: obtaining a small sample *s* to represent the whole data set *N*
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- □ Key principle: Choose a **representative** subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling:
- Note: Sampling may not reduce database I/Os (page at a time)

Types of Sampling

- Simple random sampling: equal probability of selecting any particular item
- Sampling without replacement
 - Once an object is selected, it is removed from the population
- Sampling with replacement
 - A selected object is not removed from the population
- Stratified sampling
 - Partition (or cluster) the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)



Data Cube Aggregation

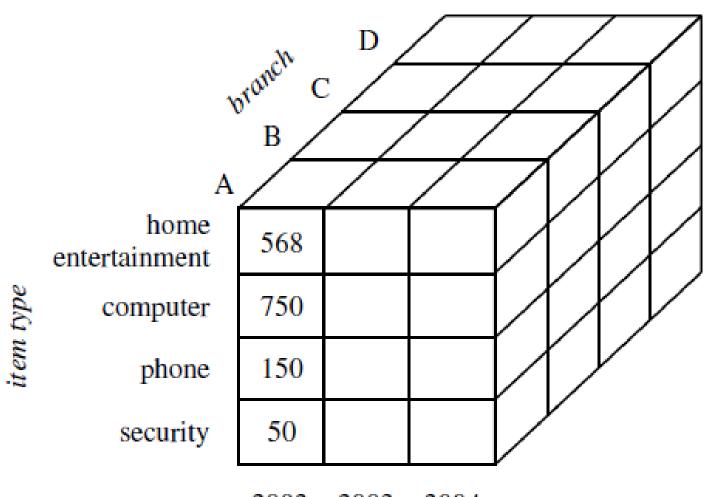
□ The lowest level of a data cube (base cuboid)

- The aggregated data for an individual entity of interest
- E.g., a customer in a phone calling data warehouse

Multiple levels of aggregation in data cubes

- Further reduce the size of data to deal with
- Reference appropriate levels
 - Use the smallest representation which is enough to solve the task
- Queries regarding aggregated information should be answered using data cube, when possible

Data Cube Aggregation



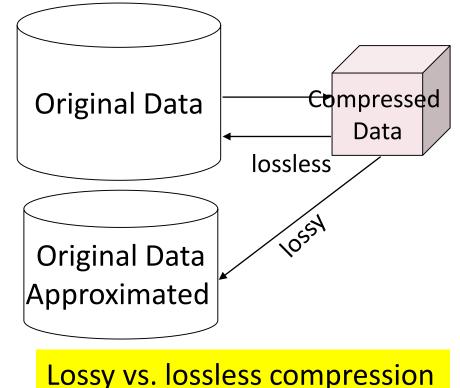
2002 2003 2004

Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically lossy compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Time sequence is not audio

36

- Typically short and vary slowly with time
- Data reduction and dimensionality reduction may
- also be considered as forms of data compression



Wavelet Transform: A Data Compression Technique

Wavelet Transform

- Decomposes a signal into different frequency subbands
- Applicable to n-dimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression



Wavelet Transformation

Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis

Daubechie4

Haar2

- Compressed approximation: Store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space
- □ Method:
 - Length, L, must be an integer power of 2 (padding with 0's, when necessary)
 - Each transform has 2 functions: smoothing, difference
 - □ Applies to pairs of data, resulting in two set of data of length L/2
 - Applies two functions recursively, until reaches the desired length

Wavelet Decomposition

- □ Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to $S_{A} = [2^{3}/_{4}, -1^{1}/_{4}, \frac{1}{2}, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2,1,4,4]	[0, -1, -1, 0]
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[ilde{2} frac{3}{4}]$	$[-1\frac{1}{4}]$

Why Wavelet Transform?

Use hat-shape filters

- Emphasize region where points cluster
- Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order

Multi-resolution

Detect arbitrary shaped clusters at different scales

Efficient

Complexity O(N)

Only applicable to low dimensional data

Data Transformation

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - □ Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

□ Min-max normalization: to [new_min₄, new_max₄]

 $v' = \frac{v - min_A}{(new max_A - new min_A) + new min_A}$ $max_A - min_A$

Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]

Then \$73,000 is mapped to $\frac{73,600-12,000}{98,000-12,000}$ (1.0-0)+0=0.716

 \Box **Z-score normalization** (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

Ex. Let
$$\mu = 54,000$$
, $\sigma = 16,000$. Then $\frac{73,600-54,000}{16,000} = 1.225$

Normalization by decimal scaling

 $v' = \frac{v}{1}$ Where *j* is the smallest integer such that Max(|v'|) < 1

Discretization

- □ Three types of attributes
 - □ Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - □ Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - **G** Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)
 - Discretization can be performed recursively on an attribute
 - Prepare for further analysis, e.g., classification

Data Discretization Methods

Binning

- □ Top-down split, unsupervised
- Histogram analysis
 - **D** Top-down split, unsupervised
- Clustering analysis
 - Unsupervised, top-down split or bottom-up merge
- Decision-tree analysis
 - □ Supervised, top-down split
- **Correlation** (e.g., χ^2) analysis
 - Unsupervised, bottom-up merge
- Note: All the methods can be applied recursively

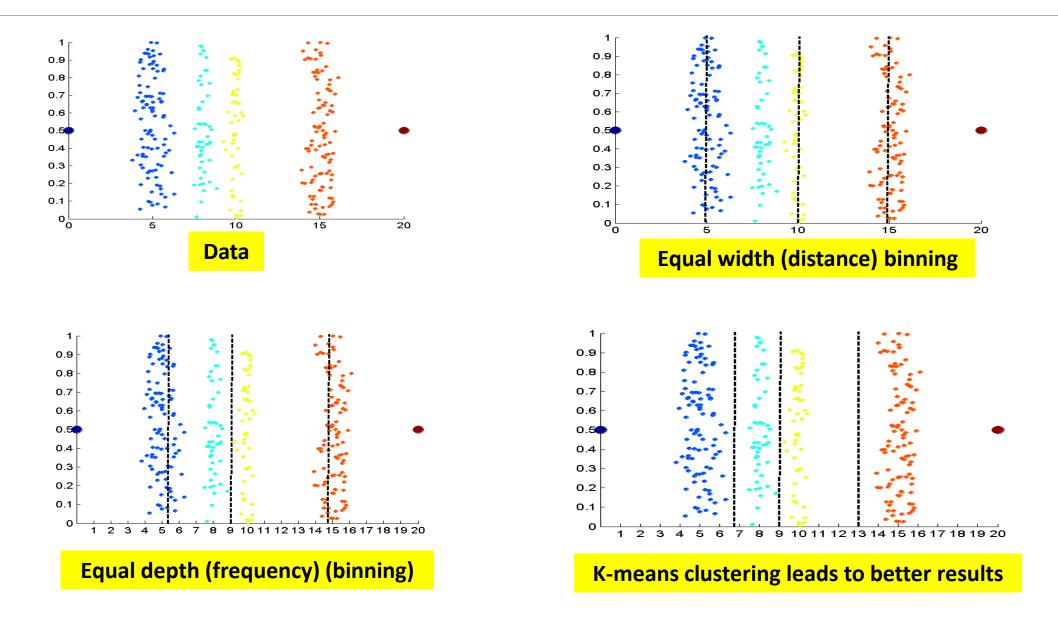
Simple Discretization: Binning

- **Equal-width** (distance) partitioning
 - Divides the range into *N* intervals of equal size: uniform grid
 - □ if *A* and *B* are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- **Equal-depth** (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Example: Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization Without Supervision: Binning vs. Clustering



Discretization by Classification & Correlation Analysis

Classification (e.g., decision tree analysis)

- □ Supervised: Given class labels, e.g., cancerous vs. benign
- Using *entropy* to determine split point (discretization point)
- □ Top-down, recursive split
- Details to be covered in Chapter "Classification"
- \Box Correlation analysis (e.g., Chi-merge: χ^2 -based discretization)
 - Supervised: use class information
 - Bottom-up merge: Find the best neighboring intervals (those having similar distributions of classes, i.e., low χ² values) to merge
 - Merge performed recursively, until a predefined stopping condition

Concept Hierarchy Generation

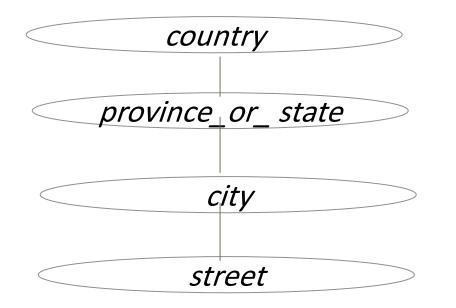
- Concept hierarchy organizes concepts (i.e., attribute values) hierarchically and is usually associated with each dimension in a data warehouse
- Concept hierarchies facilitate <u>drilling and rolling</u> in data warehouses to view data in multiple granularity
- Concept hierarchy formation: Recursively reduce the data by collecting and replacing low level concepts (such as numeric values for *age*) by higher level concepts (such as *youth, adult,* or *senior*)
- Concept hierarchies can be explicitly specified by domain experts and/or data warehouse designers
- Concept hierarchy can be automatically formed for both numeric and nominal data—For numeric data, use discretization methods shown

Concept Hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts
 - □ street < city < state < country
- Specification of a hierarchy for a set of values by explicit data grouping
 - □ {Urbana, Champaign, Chicago} < Illinois
- Specification of only a partial set of attributes
 - E.g., only *street < city*, not others
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values
 - E.g., for a set of attributes: {*street, city, state, country*}

Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy
 - Exceptions, e.g., weekday, month, quarter, year



15 distinct values

365 distinct values

3567 distinct values

674,339 distinct values

Chapter 3: Data Preprocessing

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction and Transformation

Dimensionality Reduction

Summary

Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- □ The possible combinations of subspaces will grow exponentially

Dimensionality reduction

Reducing the number of random variables under consideration, via obtaining a set of principal variables

Advantages of dimensionality reduction

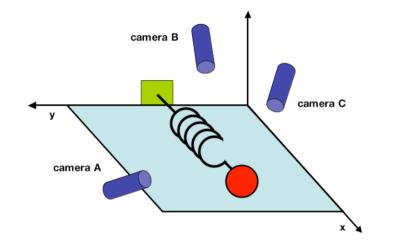
- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

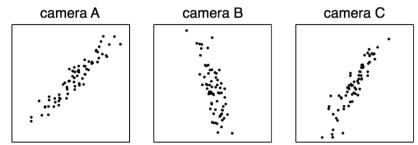
Dimensionality Reduction Techniques

- Dimensionality reduction methodologies
 - **Feature selection**: Find a subset of the original variables (or features, attributes)
 - Feature extraction: Transform the data in the high-dimensional space to a space of fewer dimensions
- Some typical dimensionality methods
 - Principal Component Analysis
 - Supervised and nonlinear techniques
 - Feature subset selection
 - □ Feature creation

Principal Component Analysis (PCA)

- PCA: A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called *principal components*
- The original data are projected onto a much smaller space, resulting in dimensionality reduction
- Method: Find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

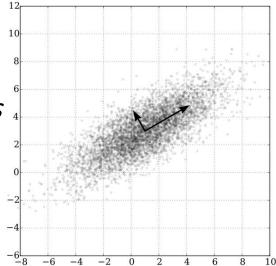




Ball travels in a straight line. Data from three cameras contain much redundancy

Principal Component Analysis (Method)

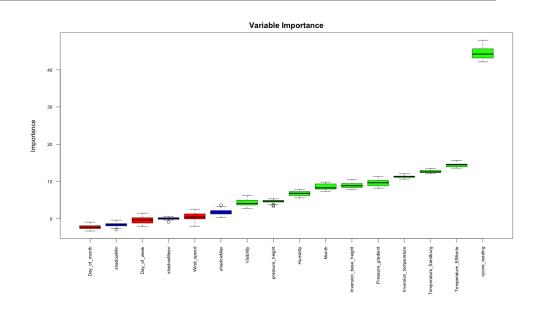
- Given N data vectors from n-dimensions, find k ≤ n orthogonal vectors (principal components) best used to represent data
 - Normalize input data: Each attribute falls within the same range
 - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, to reconstruct a good approximation of the original data)
- Works for numeric data only



Ack. Wikipedia: Principal Component Analysis

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information
 contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - Ex. A student's ID is often irrelevant to the task of predicting his/her GPA



Heuristic Search in Attribute Selection

- **There are** 2^d possible attribute combinations of d attributes
- **Typical heuristic attribute selection methods:**
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - □ The best single-attribute is picked first
 - □ Then next best attribute condition to the first, ...
 - Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
 - Attribute extraction
 - Domain-specific
 - Mapping data to new space (see: data reduction)
 - E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter on "Advanced Classification")
 - Data discretization

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- **Data cleaning**: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - Entity identification problem; Remove redundancies; Detect inconsistencies
- **Data reduction, data transformation and data discretization**
 - Numerosity reduction; Data compression
 - Normalization; Concept hierarchy generation
- Dimensionality reduction

Q

- Use a flowchart to summarize the following procedures for *attribute subset* selection:
 - □ (a) stepwise forward selection
 - (b) stepwise backward elimination
 - □ (c) a combination of forward selection and backward elimination

Q

□ Suppose a group of 12 *sales price* records has been sorted as follows:

5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215

Partition them into three bins by each of the following methods:

- (a) equal-frequency (equidepth) partitioning
- □ (b) equal-width partitioning
- □ (c) clustering